
Domestic Audio Classification

Taqiya Ehsan
RUID: 194000857

Rutgers University, New Brunswick

Fall 2021

Abstract
In this paper, we build a pipeline architecture
for an audio classifier that can classify different
domestic sounds. This framework is created to
facilitate activity recognition by MAESTRO
sensors deployed inside buildings with a view to
constructing smart, energy-efficient buildings.
The novelty of the part of the project outlined
in this paper lies in the fact that there does
not yet exist an audio classifier for acoustic
scene classification within domestic environ-
ments. This paper establishes the pipeline
to build a CNN model for this purpose using
the most well-suited audio feature extraction
techniques and audio preprocessing. This
architecture would be an essential building
block for configuring sensors to operate in the
most energy-efficient way by identifying human
activities based on audio data generated from
them.

Keywords
feature extraction, CNN, melspectrogram

1 Introduction
In this paper, we build a pipeline architecture
for an audio classifier that can classify different
domestic sounds. This pipeline consists of all the
pieces required to train and establish a Convo-
lution Neural Network model to read in, prepro-
cess, and classify audio data based on specific
domestic activity labels. Through this paper,
we aim to address three fundamental aspects for
building an audio classifier:

• What dataset would be best suited to train
and evaluate a model?

• What are the features that need to be ex-
tracted from the audio files to input into
our model for the most accurate results?

• Analysis of already existing CNN models for
audio classification.

In future work, we will be able to build on
the simplistic audio event classifier to identify
activities and environments in which the event
is taking place.
We begin this paper by introducing labeled
audio datasets available to build and train
audio classifiers. We present the details of the
datasets, the number of class labels and sample
size each has and the potential challenges with
each dataset. This paper also discusses a simple
method to read in .WAV files and remove
background noise from the audio file as a part
of audio preprocessing.
Once the audio data has been cleaned and
processed, it is still not ready to be fed into
a model. Some of the most accurate CNN
classifiers are trained on image data that
have specific features. To replicate the same
accuracy in audio classification, it is essential
to extract features from the audio files as
well. Feature extraction from audio files can
be implemented through different techniques.
This paper explores the four most common
audio feature extraction techniques – Melspec-
trogram, Mel-frequency Cepstral Coefficients
(MFCC), Spectral Contrast, and Chromagram
and elaborates on which input would work best
for a CNN model.
Lastly, this paper presents two potential CNN
models that can be trained using the domestic
audio datasets introduced earlier. Both the
CNN models were built for audio classification
– the first for urban sound classification and
the second for animal sound classification. The
paper outlines the technical details of each
model and how each might be beneficial for
the overarching aim of the project – to classify
sensor audio data collected from domestic
environments.
We conclude this paper with the architecture of
this audio classification model and an elabora-
tion of the future work to establish the complete
model for application on MAESTRO sensor
audio data.

1



2 Datasets
Audio event classification is a challenging ma-
chine learning task. The most challenging as-
pect was to find a dataset with labels relevant
to the domestic sound classification that we want
to achieve. Some additional challenges with the
datasets we were able to find included:

• Audio files muffled with background noise

• Limited number of samples per label

• Unbalanced train and test datasets

• Inconsistent samples with varying loudness
and time durations

• Incorrectly labeled files

After exploring different datasets, we settled on
two potential datasets that contained class la-
bels relevant to domestic sounds and data we
might be able to work with.

2.1 AudioSet
AudioSet is a large scale weakly labelled 2.3 GB
audio dataset published in 2017 and is main-
tained by Google. It contains an expanding
ontology of 632 audio event classes and a col-
lection of 2,084,320 human-labeled 10-second
sound clips drawn from YouTube videos with
527 labels. The dataset is divided into three dis-
joint sets: a balanced evaluation set, a balanced
training set, and an unbalanced training set.
The balanced evaluation and balanced training
datasets have the same number of samples for
each class.
Of the 632 event classes in AudioSet, 50 classes
are domestic sounds relevant to our target au-
dio classification. The 50 classes contain almost
3.3K samples for each of the training and eval-
uation datasets.

Many sophisticated GitHub projects have
been built using Google’s every expansive Au-
dioSet data. Notable among these projects are
Google’s very own VGGish classifier/feature ex-
tractor Tensorflow package as well as its succes-
sor YouTube-8m. IBM improved upon Google’s
work by proposing an attention neural network
for AudioSet that can achieve a mean aver-
age precision (mAP) of 0.360[3]. However, this
dataset is difficult to use. Some of the challenges
with Google’s Audioset dataset are as follows:

• The dataset has multi-labelled samples so
correlating class label with sample becomes
complicated when training

Figure 1: (L) Number of samples for all 50
classes (R) Classes with at least 50 samples each.

• The audio clips are of varying quality that
require attention-based feature extractors
and audio clip splitting for real-time sound
event recognition

2.2 Kaggle DASEE-dataset

Kaggle’s Domestic Acoustic Sounds and Events
in the Environment (DASEE) is an audio
database collected from a typical one-bedroom
apartment at Hebrew SeniorLife Facility for de-
mentia patients. It is an 11-class database con-
taining excerpts of clean and noisy signals at 5-
seconds duration each. The audio files are uni-
formly sampled at 16 kHz and yielded a weighted
F1-score of 86.24’% using the baseline models
using Continues Wavelet Transform Scalograms
and AlexNet.The train-test split for this dataset
is approximately 92-8[1].
The only challenges with this dataset are that

Figure 2: Sample size per class

Figure 3: Train-test split

it has a limited number of classes and the classes
are not as specific as the ones in the AudioSet
dataset.

2



3 Audio Preprocessing
LibrROSA is a python package for audio
analysis which can be used to read in .wav files.
Through LibROSA audio files are read in as
numpy arrays consisting of amplitudes sampled
at some arbitrary sampling rate. The audio
clip can also be visualized using librosa numpy
arrays.[4]

audio_data, sampling_rate = librosa.load(“audio.wav”)

Figure 4: Visualization of the sound of a faucet
running obtained from Audioset.

For datasets with noisy samples, a noise
reduction algorithm outlined by Audacity,
called “spectral noise gating” can be used. This
can be implemented using a package called
noisereduce can be used for this purpose.[7]

noisy_part = audio_data[start_time:end_time]

reduced_noise = nr.reduce_noise(audio_clip=audio_data,
noise_clip=noisy_part,verbose=True)

The challenge here is that the noisy_part was
deduced from careful inspection of an audio clip
which is difficult to perform on large datasets
whose audio samples have been recorded us-
ing different equipment. This is why using
an already clean dataset like Kaggle’s DASEE-
dataset might be a simpler route for building an
efficient audio classifier.

4 Feature Extraction

Feature extraction is an essential step in au-
dio signal processing and audio event classifi-
cation. In a broader sense, feature extraction
involves reducing the number of resources re-
quired to describe a large dataset. Analysis of
data with a large number of variables would re-
quire a large amount of memory and computa-
tion power, while running the risk of causing the
classification algorithm to overfit to the training
samples and generalize poorly to new samples.
So feature extraction is used to construct com-
binations of variables to get around these issues
and to describe the data with sufficient accu-
racy. Some Machine Learning scientists believe
that properly optimized feature extraction is the
key to effective model construction.

[6] In case of audio classification, some of the
most notable feature extraction techniques are
presented in the following sections. The Python
package LibROSA introduced in the preced-
ing section offers useful methods to implement
these techniques. Using these methods from Li-
bROSA, four types of feature extraction have
been conducted on the running faucet audio clip
presented earlier:

• melspectrogram:

A Mel-scaled power spectrogram first takes a regular
spectrogram of the sample, then converts the frequen-
cies to mel frequencies. The features are frequency
bins of the sample, which are averaged over time. This
is useful for obtaining frequency information versus
time.[7, 4]

• mfcc:

Mel-frequency cepstral coefficients provide information
about the rate of change of the frequency spectrum
bands using the power cepstrum to eliminate phase.
This is achieved by performing a Fourier transform on
the input waveform, converting the resulting spectrum
to the mel frequency band, then taking the logs of the
powers of each frequency, and performing a discrete
cosine transform. The resulting values are the coef-
ficients evolving over time, the average of which are
used as features.[7, 4]

• spectral_contrast:

A spectral contrast is used to classify broad versus nar-
row frequency band signals using a short time Fourier
transform. Contrast is calculated by taking the dif-
ference between the spectral peak and valley within a
sub band. A high contrast translates to narrow band
signals, while a low contrast translates to wide band
signals. The signal is evenly split into frequency sub
bands to calculate contrast over time. These then be-
come additional features when all time values are av-
eraged.[7, 4]

• chorma-stft:

Computing a chromagram from a waveform or power
spectrogram uses short time Fourier transforms. A
chromagram is based on the 12 pitch classes – the
Fourier transform aggregates information about each
pitch within the sample as a feature at each FT win-
dow. The data can be averaged for additional features
out of this. This technique is useful for obtaining pitch
information irrespective of timbre.[7, 4]

Figure 5: Melspectrogram

5 Convolution Neural Net-
work Models

A very powerful deep learning neural network
algorithm called Convolution Neural Network
(CNN) has been developed through years of re-
search on vision and how humans and animals

3



Figure 6: MFCC

Figure 7: Spectral Contrast

Figure 8: Chroma STFT

perceive images. CNN models can classify im-
ages with high accuracy. This is because CNNs
are fully connected feed forward neural networks
that are very effective in reducing the number
of parameters without losing on the quality of
models. Images have high dimensionality (as
each pixel is considered as a feature) which suits
the above described abilities of CNNs. More-
over, CNNs were primarily developed for image
classification. CNNs are trained to identify the
edges of objects in any image.[5]
By exploiting the CNN’s ability to classify im-
ages with high accuracy, many different types of
classifiers have been developed using it through-
out the years. The benefit of using CNN for
classification, besides its high accuracy, is that
it can be generalized for a wide range of classi-
fication. Many examples of trained models for
audio classification using CNN can be found out
there. However, for the purposes of this project
for domestic sound classification, the following
two models could be used.

5.1 Model 1: Urban Sound Classi-
fication

This model has been adapted from a paper that
aims to classify different urban sounds using
a Convolution Neural Network. This specific

model was trained and evaluated using the Ur-
banSound8K dataset incorporating its 10-folds
cross validation. The paper uses the Sequential
model from Keras and the Adam optimizer
to minimize a sparse categorical cross-entropy
objective for training the network. The CNN is
built with four layers, each followed by batch
normalization and max-pooling. After the last
convolutional layer, a global pooling is added to
extract embedding, which is further processed
by a fully-connected layer. Lastly, a Dense layer
with Softmax activation is added to output
probabilities of the sound classes.[6]

model = keras.models.Sequential()
model.add(keras.layers.Conv2D(24, kernel_size, padding="same",
input_shape=input_shape))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.MaxPooling2D(pool_size=pool_size))
model.add(keras.layers.Conv2D(32, kernel_size, padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.MaxPooling2D(pool_size=pool_size))
model.add(keras.layers.Conv2D(64, kernel_size, padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.MaxPooling2D(pool_size=pool_size))
model.add(keras.layers.Conv2D(128, kernel_size, padding="same"))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.GlobalMaxPooling2D())
model.add(keras.layers.Dense(128, activation="relu"))
model.add(keras.layers.Dense(num_classes, activation="softmax"))
model.compile(optimizer=keras.optimizers.Adam(1e-4),
loss=keras.losses.SparseCategoricalCrossentropy(), metrics=["accuracy"])

5.2 Model 2: Animal Sound Clas-
sification

This CNN model was conceptualized to perform
classification on animal sounds over multiple
levels. However, to start off, the authors trained
it to classify audio files into two labels – cats
and dogs, trained using UrbanSound8K and
Kaggle Cats Dogs and ESC datasets.
The model is made of four Dense layers that
have 256, 128, 64, and n_classes number of
outputs. The input of the first layer is set
dynamically to 187 (the number of features
pulled). Each layer is paired with the ReLu ac-
tivation function, except for the final layer that
uses a Softmax activation function. It compiles
with the sparse_categorical_crossentropy loss
function with an Adam optimizer. The learning
rate of this model was discovered to be most
efficient at 0.001. The model was trained in
sets of 10 audio files per batch, and training it
for about 60 epochs was found to be the most
optimal.

model = Sequential()
model.add(Dense(256, activation=’relu’, input_dim=x_train.shape[1]))
model.add(Dense(128, activation=’relu’))
model.add(Dense(64, activation=’relu’))
model.add(Dense(n_classes, activation=’softmax’))
model.compile(loss=’sparse_categorical_crossentropy’,
optimizer=optimizer, metrics=[’accuracy’])

This two-label CNN classifier was able to
achieve approximately an average of 91.38%
testing accuracy – 83.67% accuracy for dog la-
bels and 100% accuracy for cat labels.
The authors then moved to generalizing the

4



model a bit more to build a 12-label animal
sound classifier. They used the Kaggle Cats vs
Dogs dataset and a subset of the animal-only
data from the Kaggle Environmental Sounds
dataset to train and test the model. They re-
ceived a training accuracy of 100% and a test
accuracy of 97.22% with a training cross entropy
loss of 1% and a test cross entropy loss of 13%
when the data was split 80–20 for training and
testing. Using various random seeds and train-
test splits, the model consistently achieved an
accuracy of approximately 95%.[7]

6 Architecture & Assump-
tions

The audio classification architecture that would
result from this machine learning model has
been visualized here.

The feature extraction technique that would

Figure 9: Model architecture including CNN
model

work most effectively as the input of this model
would be the Melspectrogram. Broadly spec-
trograms are essentially concise snapshots of
the audio wave and therefore are well-suited
for CNN-based architectures, such as this one,
which were built for handling image data. In
Mel Spectrograms the frequency is accounted for
in the Mel Scale and amplitude in Decibels. As
a result the difference of varying amplitudes at
different points in an audio wave become even
more vivid and so easier for the CNN model
to perceive and derive more information from.
In other words, the Mel Spectrogram captures
the most essential features of any audio file and
therefore is often the most suitable input for au-
dio data in deep learning models.[2]
The contrast between figures a and b make

Figure 10: Regular spectrogram

Figure 11: Mel spectrogram

clear the difference between a regular spectro-
gram and the mel-spectrogram. In the latter, it
is easier to distinguish between higher and lower
amplitudes because of using the Mel scale to ex-
press frequencies instead of Hertz.

7 Conclusion
This report presents a detailed description of
the different pieces required to build an audio
classifier to identify various household/domestic
sounds. Once built and trained, this audio clas-
sifier will be able to successfully read in audio
files collected from the MAESTRO sensors and
classify the different types of sounds that sensors
are able to pick up. Further work on the model
would include grouping what types of sounds can
be associated with what types of activities, for
example - cooking, showering, exercising, etc.
and what environment such activities can be
performed in, such as - kitchen, bathroom, home
gym, etc.
Although a lot of research is being done on au-
dio classification and there are many pre-trained
models that can accurately classify sound data,
there has not yet been built a model that can
specifically classify sounds based on domestic
activities. On successfully training this CNN
model for audio classification, it could prove to
be a novel and noteworthy contribution to Ma-
chine Learning in the Internet-of-Things.

References
[1] Abigail Copiaco. Domestic Acoustic Sounds

and Events in the Environment of dementia
patients. 2021. url: https://www.kaggle.
com / abigailcopiaco / daseedataset /
metadata.

[2] Ketan Doshi. “Audio Deep Learning
Made Simple (Part 2): Why Mel Spec-
trograms perform better”. In: Towards
Data Science (2021). url: https :
/ / towardsdatascience . com / audio -
deep - learning - made - simple - part -

5

https://www.kaggle.com/abigailcopiaco/daseedataset/metadata
https://www.kaggle.com/abigailcopiaco/daseedataset/metadata
https://www.kaggle.com/abigailcopiaco/daseedataset/metadata
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505


2 - why - mel - spectrograms - perform -
better-aad889a93505.

[3] Google. AudioSet. 2021. url: https :
/ / research . google . com / audioset /
download.html.

[4] Brian McFee et al. “librosa: Audio and mu-
sic signal analysis in python”. In: SciPy
(2015). doi: https://zenodo.org/badge/
latestdoi/6309729.

[5] Prafful Mishra. “Why are Convolutional
Neural Networks good for image classi-
fication?” In: The Medium (2019). url:
https://medium.datadriveninvestor.
com / why - are - convolutional -
neural - networks - good - for - image -
classification-146ec6e865e8.

[6] Aaqib Saeed. “Urban Sound Classifica-
tion Part 2”. In: (2020). url: https : / /
aqibsaeed . github . io / 2016 - 09 - 24 -
urban-sound-classification-part-2/.

[7] Colton Saska, Mark DiValerio, and
Matthew Molter. “Building an Audio
Classifier”. In: The Medium (2019). url:
https://medium.com/@anonyomous.ut.
grad . student / building - an - audio -
classifier-f7c4603aa989.

6

https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://towardsdatascience.com/audio-deep-learning-made-simple-part-2-why-mel-spectrograms-perform-better-aad889a93505
https://research.google.com/audioset/download.html
https://research.google.com/audioset/download.html
https://research.google.com/audioset/download.html
https://doi.org/https://zenodo.org/badge/latestdoi/6309729
https://doi.org/https://zenodo.org/badge/latestdoi/6309729
https://medium.datadriveninvestor.com/why-are-convolutional-neural-networks-good-for-image-classification-146ec6e865e8
https://medium.datadriveninvestor.com/why-are-convolutional-neural-networks-good-for-image-classification-146ec6e865e8
https://medium.datadriveninvestor.com/why-are-convolutional-neural-networks-good-for-image-classification-146ec6e865e8
https://medium.datadriveninvestor.com/why-are-convolutional-neural-networks-good-for-image-classification-146ec6e865e8
https://aqibsaeed.github.io/2016-09-24-urban-sound-classification-part-2/
https://aqibsaeed.github.io/2016-09-24-urban-sound-classification-part-2/
https://aqibsaeed.github.io/2016-09-24-urban-sound-classification-part-2/
https://medium.com/@anonyomous.ut.grad.student/building-an-audio-classifier-f7c4603aa989
https://medium.com/@anonyomous.ut.grad.student/building-an-audio-classifier-f7c4603aa989
https://medium.com/@anonyomous.ut.grad.student/building-an-audio-classifier-f7c4603aa989

	Introduction
	Datasets
	AudioSet
	Kaggle DASEE-dataset

	Audio Preprocessing
	Feature Extraction
	Convolution Neural Network Models
	Model 1: Urban Sound Classification
	Model 2: Animal Sound Classification

	Architecture & Assumptions
	Conclusion

